Other Utility Functions ################################## Seeds for Random Distributions ******************************************* set_random_seed ============================== .. py:function:: pyvqnet.utils.set_random_seed(seed) Set the global random seed. :param seed: random seed. .. note:: When a fixed random number seed is specified, the random distribution will generate a fixed pseudo-random distribution based on the random seed. Affects functions include: `tensor.randu` , `tensor.randn` , parameter initialization for parametric classical neural networks and quantum computing layers. Example:: import pyvqnet.tensor as tensor from pyvqnet.utils import get_random_seed, set_random_seed set_random_seed(256) rn = tensor.randn([2, 3]) print(rn) rn = tensor.randn([2, 3]) print(rn) rn = tensor.randu([2, 3]) print(rn) rn = tensor.randu([2, 3]) print(rn) from pyvqnet.nn.parameter import Parameter from pyvqnet.utils.initializer import he_normal, he_uniform, xavier_normal, xavier_uniform, uniform, quantum_uniform, normal print(Parameter(shape=[2, 3], initializer=he_normal)) print(Parameter(shape=[2, 3], initializer=he_uniform)) print(Parameter(shape=[2, 3], initializer=xavier_normal)) print(Parameter(shape=[2, 3], initializer=xavier_uniform)) print(Parameter(shape=[2, 3], initializer=uniform)) print(Parameter(shape=[2, 3], initializer=quantum_uniform)) print(Parameter(shape=[2, 3], initializer=normal)) # [ # [-1.2093765, 1.1265280, 0.0796480], # [0.2420146, 1.2623813, 0.2844022] # ] # [ # [-1.2093765, 1.1265280, 0.0796480], # [0.2420146, 1.2623813, 0.2844022] # ] # [ # [0.3151870, 0.6721524, 0.0416874], # [0.8232620, 0.6537889, 0.9672953] # ] # [ # [0.3151870, 0.6721524, 0.0416874], # [0.8232620, 0.6537889, 0.9672953] # ] # ######################################################## # [ # [-0.9874518, 0.9198063, 0.0650323], # [0.1976041, 1.0307300, 0.2322134] # ] # [ # [-0.2134037, 0.1987845, -0.5292138], # [0.3732708, 0.1775801, 0.5395861] # ] # [ # [-0.7648768, 0.7124789, 0.0503738], # [0.1530635, 0.7984000, 0.1798717] # ] # [ # [-0.4049051, 0.3771670, -1.0041126], # [0.7082316, 0.3369346, 1.0237927] # ] # [ # [0.3151870, 0.6721524, 0.0416874], # [0.8232620, 0.6537889, 0.9672953] # ] # [ # [1.9803783, 4.2232580, 0.2619299], # [5.1727076, 4.1078768, 6.0776958] # ] # [ # [-1.2093765, 1.1265280, 0.0796480], # [0.2420146, 1.2623813, 0.2844022] # ] get_random_seed ============================== .. py:function:: pyvqnet.utils.get_random_seed() Get current random seed. Example:: import pyvqnet.tensor as tensor from pyvqnet.utils import get_random_seed, set_random_seed set_random_seed(256) print(get_random_seed()) #256