基础逻辑门转换 ================= 简介 -------------- 在NISQ时代,量子计算机无法做到任意逻辑门的运行。因此需要将其转化为量子芯片所支持的基础逻辑门集合以实现通用计算。在本源量子芯片中所支持的单双门组合则为 :math:`U_3` 和 :math:`CZ` 。 因此,在编译量子程序时,QPanda会对非基础逻辑门进行转换。 原理 -------------- 首先,定义 :math:`\phi` 为 :math:`XY` 平面内某一旋转轴与 :math:`X` 正向的夹角,则对任意 :math:`XY` 旋转门,有: .. math:: \begin{aligned} R_\phi(\theta) = cos\frac{\theta}{2}I - i sin\frac{\theta}{2}(cos\phi\sigma_x + sin\phi\sigma_y) = \begin{pmatrix} cos\frac{\theta}{2} & -i sin\frac{\theta}{2}e^{-i\phi} \\ -isin\frac{\theta}{2}e^{i\phi} & cos\frac{\theta}{2} \end{pmatrix} \end{aligned} Z旋转门的形式如下: .. math:: \begin{aligned} R_Z(\theta) = cos\frac{\theta}{2}I - i sin\frac{\theta}{2}\sigma_Z = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \end{aligned} 易证: .. math:: \begin{aligned} R_X(\theta_X)R_Z(\theta_Z) = R_Z(\theta_Z)R_{-\theta_Z}(\theta_X) \end{aligned} .. math:: \begin{aligned} R_Z(\theta_{Z2})R_Z(\theta_{Z1}) = R_Z(\theta_{Z1} + \theta_{Z2}) \end{aligned} .. math:: \begin{aligned} CZ[R_Z(\theta_{Z1}) \otimes R_Z(\theta_{Z2})] = [ R_Z(\theta_{Z1} \otimes R_Z(\theta_{Z2}) ]·CZ \end{aligned} 以上公式是Virtual Z 门的基础。它意味着,我们可以将线路中已有的Z操作转移到XY操作之后,作为替代,原XY操作的旋转轴将随之变换。而被转移到线路后排的Z操作可以合并,并继续转移,以此类推。 这里我们用单比特的SU(2)门来举例证明: .. math:: \begin{aligned} U(\theta , \phi ,\lambda) = \begin{bmatrix} cos\frac{\theta}{2} & -isin\frac{\theta}{2}e^{i\lambda} \\ -isin\frac{\theta}{2}e^{i\phi} & cos\frac{\theta}{2}e^{i(\lambda + \phi)} \end{bmatrix} \end{aligned} 利用 .. math:: \begin{aligned} R_X(\theta) = R_Z(-\frac{\pi}{2})R_X(\frac{\pi}{2})R_Z(\pi - \theta)R_X(\frac{\pi}{2})R_Z(-\frac{\pi}{2}) \end{aligned} 最终得到 .. math:: \begin{aligned} U(\theta , \phi ,\lambda) = R_Z(\phi - \frac{\pi}{2})R_X(\frac{\pi}{2})R_Z(\pi - \theta)R_X(\frac{\pi}{2})R_Z(\lambda - \frac{\pi}{2}) = R_Z(\phi + \lambda - \theta)R_{\frac{\pi}{2} + \lambda - \theta}(\frac{\pi}{2})R_{\lambda - \frac{\pi}{2}}(\frac{\pi}{2}) \end{aligned} 可见,任意的SU(2)门都可以轻易转化成两个任意旋转轴的 :math:`\pi/2` 门,以及一个Vritual Z 门。 代码示例 --------- 这里我们对前一节QSD分解之后的线路使用Vritual Z 门进行转换,只需要执行下面这行代码即可。 .. code-block:: python from pyqpanda import * import numpy as np from scipy.stats import unitary_group if __name__ == "__main__": machine = CPUQVM() machine.init_qvm() q = machine.qAlloc_many(3) c = machine.cAlloc_many(3) # 生成任意酉矩阵 unitary_matrix = unitary_group.rvs(2**3,random_state=169384) # 输入需要被分解的线路 prog = QProg() prog< QProg Basic quantum gate conversion Args: qprog (QProg): Quantum program machine (QuantumMachine): Quantum machine convert_single_gates (List[str]): List of quantum single gates to convert convert_double_gates (List[str]): List of quantum double gates to convert Returns: QProg: A new quantum program after the transformation This function performs basic quantum gate conversion on the given quantum program using the specified quantum machine. It allows the conversion of specific sets of single and double gates, as defined by the lists `convert_single_gates` and `convert_double_gates`, respectively. Usage Example ------------- .. code-block:: python from pyqpanda import * import numpy as np from scipy.stats import unitary_group machine = CPUQVM() machine.init_qvm() q = machine.qAlloc_many(3) c = machine.cAlloc_many(3) unitary_matrix = unitary_group.rvs(2**3,random_state=169384) prog = QProg() prog << matrix_decompose(q, unitary_matrix, mode=DecompositionMode.QSDecomposition) convert_single_gates = ["H", "T", "RX", "RY", "RZ"] convert_double_gates = ["CNOT", "CZ"] # Perform quantum gate conversion new_qprog = transform_to_base_qgate(prog, machine, convert_single_gates, convert_double_gates) # Print the new quantum program print(new_qprog)