映射教程 =================================   为了在量子计算机上模拟电子结构问题,我们需要一个映射关系,将电子的费米子算符映射(mapping)到量子计算机的泡利算符(pauli operator, 即pauli X矩阵, pauli Y矩阵, pauli Z矩阵, 单位矩阵I)。目前,比较常见的映射有Jordan-Wigner(JW)变换 [1]_、Bravyi-Kitaev(BK)变换 [2]_ 和Parity变换 [3]_ 等。不同的变换所得到的量子线路深度可能有所不同,但他们的功能都是一致的,都是为了将费米子系统映射到量子计算机中去。   这里,我们以JW变换为例展示三个自旋轨道的映射示意图,如图1所示。可以看出,在JW变换下,每一个量子比特标识一个费米轨道,占据态和非占据态分别映射到量子比特的 :math:`|1\rangle` 态和 :math:`|0\rangle` 态。此时,轨道和量子比特是一一对应的。 .. image:: ./picture/JW.png :align: center .. centered:: 图 1: 三个自旋轨道的JW变换示意图.图引自 [4]_   在pychemiq.Transform这个模块中,一个非常重要的子模块是pychemiq.Transform.Mapping,实现的是就是把费米子算符映射成为泡利算符。目前pyChemiQ支持的映射方式有Jordan-Wigner(JW)变换、Bravyi-Kitaev(BK)变换、Parity变换和Multilayer Segmented Parity(MSP)变换 [5]_ 。可以通过如下方式调用相应的包: .. code-block:: from pychemiq.Transform.Mapping import ( jordan_wigner, bravyi_kitaev, parity, segment_parity)   例如我们使用JW变换将上节氢分子的费米子Hamiltonian映射成泡利形式,示例代码如下: .. code-block:: # 先初始化得到氢分子的费米子Hamiltonian from pychemiq import Molecules multiplicity = 1 charge = 0 basis = "sto-3g" geom = "H 0 0 0,H 0 0 0.74" mol = Molecules( geometry = geom, basis = basis, multiplicity = multiplicity, charge = charge) fermion_H2 = mol.get_molecular_hamiltonian() # 使用JW变换将得到的氢分子的费米子Hamiltonian映射成泡利形式 pauli_H2 = jordan_wigner(fermion_H2) print(pauli_H2)   打印结果如下: .. code-block:: { "" : -0.097066, "X0 X1 Y2 Y3" : -0.045303, "X0 Y1 Y2 X3" : 0.045303, "Y0 X1 X2 Y3" : 0.045303, "Y0 Y1 X2 X3" : -0.045303, "Z0" : 0.171413, "Z0 Z1" : 0.168689, "Z0 Z2" : 0.120625, "Z0 Z3" : 0.165928, "Z1" : 0.171413, "Z1 Z2" : 0.165928, "Z1 Z3" : 0.120625, "Z2" : -0.223432, "Z2 Z3" : 0.174413, "Z3" : -0.223432 }   除此之外,pyChemiQ也支持自行构建费米子算符或泡利算符来自定义哈密顿量。详见进阶教程第一节。 **参考文献** .. [1] E Wigner and Pascual Jordan. Über das paulische äquivalenzverbot. `Z. Phys`, 47:631, 1928. .. [2] Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computation. `Annals of Physics`, 298(1):210–226, 2002. .. [3] Jacob T Seeley, Martin J Richard, and Peter J Love. The bravyi-kitaev transformation for quantum computation of electronic structure. `The Journal of chemical physics`, 137(22):224109, 2012. .. [4] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for quantum chemistry and quantum materials science. `Chemical Reviews` , 120(22):12685–12717, 2020. .. [5] Qing-Song Li, Huan-Yu Liu, Qingchun Wang, Yu-Chun Wu, and Guo-Ping Guo. A unified framework of transformations based on the jordan–wigner transformation. `The Journal of Chemical Physics`, 157(13):134104, 2022.